Freiburg, 12.12.2024
Wissenschaftler*innen unter der Leitung von Dr. Lukas Bruder von der Universität Freiburg kontrollieren mit dem Freie Elektronen Laser FERMI spezielle Quantenzustände in Helium-Atomen.
Einem internationalen Team von Wissenschaftler*innen unter der Leitung von Dr. Lukas Bruder, Nachwuchsgruppenleiter am Physikalischen Institut der Universität Freiburg, ist es gelungen, hybride Elektron-Photon Quantenzustände in Helium-Atomen zu erzeugen und diese direkt zu kontrollieren. Mit dem Freie Elektronen Laser FERMI in Triest, Italien, erzeugten sie hierfür speziell präparierte extrem-ultraviolette Lichtpulse mit hoher Intensität. Die Kontrolle der Quantenzustände erreichten die Wissenschaftler*innen durch eine neue Technik zur Laserpulsformung. Ihre Ergebnisse publizierten sie im Fachjournal Nature.
Solange Elektronen an ein Atom gebunden sind, können sie nur bestimmte Energien haben. Die Werte dieser Energieniveaus hängen zunächst von den Atomen selbst ab. Befindet sich ein Atom im Strahl eines sehr intensiven Lasers, kommt es allerdings zu Verschiebungen der Energieniveaus. Es entstehen hybride Photon-Elektron Zustände (sog. „dressed states“). Diese treten bei Laserleistungen zwischen zehn und hundert Billionen Watt pro Quadratzentimeter auf. Um diese speziellen Quantenzustände erzeugen und kontrollieren zu können, sind deshalb Laserpulse notwendig, die eine solche Leistung innerhalb eines Zeitfensters von ein paar Billiardstel Sekunden erreichen.
Für ihr Experiment nutzten die Wissenschaftler*innen den Freie Elektronen Laser FERMI. Mit diesem Laser lässt sich Laserlicht im extrem-ultravioletten Spektralbereich mit sehr hoher Intensität erzeugen. Diese extrem-ultraviolette Strahlung hat eine Wellenläge von weniger als 100 Nanometern, was nötig ist, um die Elektronenzustände im Helium-Atom anzusprechen.
Um die Elektron-Photon-Zustände zu kontrollieren, verwendeten die Forschenden Laserpulse, die je nach Szenario auseinanderliefen oder gestaucht wurden. Dies erreichten sie, indem sie die zeitliche Verzögerung der verschiedenen Farbanteile des Lichts steuerten. Die Eigenschaften der Laserpulse wurden mithilfe eines sogenannten Seed-Laser-Pulses kontrolliert, der die Emission des Freie Elektronen Lasers vorkonditioniert. „Mit unserer Forschung konnten wir zum ersten Mal direkt die kurzlebigen Quantenzustände in einem Helium-Atom kontrollieren“, sagt Bruder. „Die von uns entwickelte Technik eröffnet ein neues Forschungsfeld: Es ergeben sich neue Möglichkeiten, Experimente mit Freie Elektronen Lasern deutlich effizienter und selektiver zu machen. Es können neue Einblicke in fundamentale Quantensysteme gewonnen werden, die mit sichtbarem Licht nicht erreichbar sind. Insbesondere könnten nun Methoden entwickelt werden, um chemische Reaktionen mit atomarer Präzision zu untersuchen oder gar zu steuern.“