Selected Publications
- Zimmer, A.D., D. Lang, K. Buchta, S. Rombauts, T. Nishiyama, M. Hasebe, Y. van de Peer, S.A. Rensing, R. Reski (2013): Reannotation and extended community resources of the non-seed plant Physcomitrella patens provide insights into the evolution of plant gene structures and functions. BMC Genomics 14, 498.
- Khraiwesh, B., M.A. Arif, G.I. Seumel, S. Ossowski, D. Weigel, R. Reski, W. Frank (2010): Transcriptional control of gene expression by microRNAs. Cell 140, 111-122.
- Mosquna, A., A. Katz, E.L. Decker, S.A. Rensing, R. Reski, N. Ohad (2009): Regulation of stem cell maintenance by the Polycomb protein FIE has been conserved during land plant evolution. Development 136, 2433-2444.
- Lang, D., A.D. Zimmer, S.A. Rensing, R. Reski (2008): Exploring plant biodiversity: the Physcomitrella genome and beyond. Trends in Plant Science 13, 542-549.
- Rensing, S.A., D. Lang, A. Zimmer, A. Terry, A. Salamov, H. Shapiro, T. Nishiyama, P.-F. Perroud, E. Lindquist, Y. Kamisugi, T. Tanahash, K. Sakakibara, T. Fujita, K. Oishi, T. Shin-I, Y. Kuroki, A. Toyoda, Y. Suzuki, S.-i. Hashimoto, K. Yamaguchi, S. Sugano, Y. Kohara, A. Fujiyama, N. Ashton, A. Anterola, S. Aoki, W.B. Barbazuk, E. Barker, J. Bennetzen, R. Blankenship, S.H. Cho, S. Dutcher, M. Estelle, J.A. Fawcett, H. Gundlach, K. Hanada, A. Heyl, K.A. Hicks, J. Hughes, M. Lohr, K. Mayer, A. Melkozernov, T. Murata, D. Nelson, B. Pils, M. Prigge, B. Reiss, T. Renner, S. Rombauts, P. Rushton, A. Sanderfoot, G. Schween, S.-H. Shiu, K. Stueber, F.L. Theodoulou, H. Tu, Y. Van de Peer, P.J. Verrier, E. Waters, A. Wood, L. Yang, D. Cove, A.C. Cuming, M. Hasebe, S. Lucas, B.D. Mishler, R. Reski, I. Grigoriev, R.S. Quatrano, J.L. Boore (2008): The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319, 64-69.
FRIAS Project
METABEVO: Evolution of the plant phenolic metabolism: a search for new strategies to improve biofuel production (2013-2015)
The plant phenolic metabolism leads to the synthesis of biopolymers such as lignin, of antioxidants, UV-screens and compounds that are suspected to regulate plant growth. High lignin content and cross-linking in the cell walls of higher plants is a main limitation to the efficient use of the plant biomass for energy production. METABEVO proposes to reveal the structure and role of the phenolic metabolism in the moss Physcomitrella patens, an ancestral plant resistant to extreme environmental conditions and allowing targeted gene engineering that does not produce a complex lignin biopolymer, in order to propose new strategies to improve biofuel production and to optimize plant adaptation to a more challenging climate environment. This work is expected to reveal essential aspects of plant evolution upon transition from water to land and to lead to novel strategies for biofuel production.
Engineering Moss (e:MOSS) (2011-2013)
Ralf Reski’s projects in FRIAS are joined under the heading “Engineering Moss (e:MOSS)” and will apply methods from Systems Biology and Synthetic Biology, such as advanced life imaging, quantitative transcriptomics and proteomics, bioinformatics, mathematical modelling, and genetic pertubation, to understand cellular differentiation, pattern formation and early development in the moss Physcomitrella patens.