Siegelement der Uni Freiburg in Form einer Blume
  • Das Logo der Exzellenzinitiative Future Forests. Ein mit einer Fisheye-Kamera im 360 Grad Modus aufgenommener Wald.

Future Forests

Wälder bedecken circa 30 Prozent der globalen Landfläche und erbringen zahlreiche, essentielle Ökosystemleistungen (ÖSL): Sie stellen erneuerbare Ressourcen bereit, reduzieren die Auswirkungen des Klimawandels, unterstützen die menschliche Gesundheit und bewahren die biologische Vielfalt. Angesichts des raschen Klimawandels, neuartiger Störungen und der Ansiedlung oder des Verlusts von Arten entwickeln sich große Teile der Wälder hin zu neuartigen Ökosystemen, die in der Evolutionsgeschichte keine Entsprechung haben. Es ist sehr ungewiss, inwieweit diese neuartigen Ökosysteme die gewünschten ÖSL erbringen und die biologische Vielfalt erhalten können. Veränderungen werden so schnell eintreten, dass natürliche Anpassungsprozesse zu langsam sind.

Logo der Exzellenzcluster-Initiative Future Forests
Ein Bannwald im Schwarzwald

Parallel sind große gesellschaftliche Veränderungen zu erwarten, die sich aus Prozessen wie Urbanisierung, Globalisierung und Handel, Landnutzung sowie veränderten Ansprüchen in Bezug auf die Leistungen der Natur für den Menschen ergeben. Die natürliche und die soziale Sphäre sind eng miteinander verflochten, interagieren auf komplexe Weise und schaffen so unerwartete Risiken. Mit einem besseren Verständnis dieser Systemdynamik können Strategien entworfen werden, um unerwünschte Entwicklungen zu verhindern.  Daher wollen die Forschenden von Future Forests neuartige Beiträge zur Konzeptualisierung und Analyse von Wäldern als neue sozial-ökologische Systeme (SÖS) leisten.

Die Ansätze von Future Forests zur Analyse und Entwicklung von Transformationslösungen für waldbasierte SÖS werden die Grundlage für anpassungsfähigere Waldsysteme und nachhaltigere Transformationslösungen als in der Vergangenheit bilden. Diese Ansätze werden auf andere Teile der Welt und ein breites Spektrum von Ökosystemleistungen übertragbar sein.

Beteiligte Fakultäten

Sprecher*Innen

Ein Portrait von Jürgen Bauhus.

Prof. Dr. Jürgen Bauhus

Prof. Dr. Jürgen Bauhus leitet die Professur für Waldbau an der Fakultät für Umwelt und Natürliche Ressourcen. In seiner Forschung beschäftigt er sich mit der Steuerung der Struktur und Dynamik von Wäldern für die Bereitstellung von Ökosystemleistungen, mit den Auswirkungen von waldbaulichen Maßnahmen auf das Ökosystem und die Anpassung von Wäldern an den globalen Wandel. Für seine Forschung erhielt er den „Scientific Achievement Award“ der International Union of Forest Research Organizations (IUFRO). Er ist Vorsitzender des Wissenschaftlichen Beirats für Waldpolitik des Bundesministeriums für Ernährung und Landwirtschaft.

Ein Portrait von Frederike Lang.

Prof. Dr. Friederike Lang

Prof. Dr. Friederike Lang leitet die Professur für Bodenökologie, die am Institut für Forstwissenschaften der Fakultät für Umwelt und Natürliche Ressourcen angesiedelt ist. Ihre Forschungsschwerpunkte ist die Kopplung von Kohlenstoff- und Nährstoffdynamik in Waldböden, Bodenschutz (Mechanisierte Forstwirtschaft), sowie die Ökologie der Bodenstruktur. Sie forscht derzeit unter anderem im Sonderforschungsbereich ECOSENSE (SFB 1537) zu skalenübergreifenden Quantifizierung von Ökosystemprozessen mittels smarter autonomer Sensornetzwerke und ist Sprecherin der Forschungsgruppe Forest Floor (FOR 5315). Sie ist Mitglied in der Kommission Bodenschutz im Umweltbundesamt und im Wissenschaftlichen Beirat für Waldpolitik des Bundesministeriums für Ernährung und Landwirtschaft.

Ein Portrait von Marc Hanewinkel.

Prof. Dr. Marc Hanewinkel

Prof. Dr. Marc Hanewinkel ist Professor für Forstökonomie und Forstplanung am Institut für Forstwissenschaften der Fakultät für Umwelt und Natürliche Ressourcen. Er befasst sich unter anderem mit den Themen Risikoanalyse (Risikoerfassung, -modellierung und -bewertung), Auswirkungen des Klimawandels auf Wälder Europas, Entwicklung adaptiver Managementstrategien, ökonomische Analyse von Klimaänderungen, Bioenergie, Auswirkungen veränderter Waldbewirtschaftungsstrategien sowie den Waldumbau. Derzeit forscht er unter anderem in dem ClimXtreme Verbundprojekt Modul C Impacts – Teilprojekt 11: WIND – Auswirkungen von Winterstürmen in Mitteleuropa. Er ist Mitglied im europäischen Netzwerk für Forstwissenschaften NFZ.forestnet.

Principal Investigators

Neuigkeiten

Wichtigste Publikationen

Keine Inhalte gefunden.

Publikationen mit Peer-Review

  1. Schlüter, M., Brelsford, C., Ferraro, P. J., Orach, K., Qiu, M., & Smith, M. D. (2023). Unraveling complex causal processes that affect sustainability requires more integration between empirical and modeling approaches. Proceedings of the National Academy of Sciences. DOI: 10.1073/pnas.2215676120 (This recent contribution demonstrates the need for a collaborative research approach that leverages both empirical evidence and modeling techniques to tackle sustainability challenges.) 
  2. Fuo O, Zengerling C, Sotto D. (2022). A Comparative Legal Analysis of Urban Climate Mitigation and Adaptation in the Building Sector in Brazil, Germany, and South Africa. Climate Law 12(1):32–97. DOI: 10.1163/18786561-12010002 (Recent comparative legal study in the emerging field of climate law.) 
  3. Kaleta T, Kern L, Hong SL, Holzer M, Kochs G, Beer J, Schnepf D, Schwemmle M, Bollen N, Kolb P, Huber M, Ulferts S, Weigang S, Dudas G, Wittig A, Jaki L, Padane A, Lagare A, Salou M, Ozer EA, Nnaemeka N, Odoom JK, Rutayisire R, Benkahla A, Akoua-Koffi C, Ouedraogo AS, Simon-Loriere E, Enouf V, Kroger S, Calvignac-Spencer S, Baele G, Panning M, Fuchs J. (2022). Antibody escape and global spread of SARS-CoV-2 lineage A.27. Nature Communications. DOI: 10.1038/s41467-022-28766-y (This study uses state-of-the art methodology to describe virus evolution and characterization of SARS-CoV-2 A.27 lineage.) 
  4. Scherer-Lorenzen M, Gessner MO, Beisner BE, Messier C, Paquette A, Petermann JS, Soininen J, Nock CA. (2022) Pathways for cross-boundary effects of biodiversity on ecosystem functioning. Trends in Ecology & Evolution. DOI: 10.1016/j.tree.2021.12.009 (This new contribution presents a fundamental concept and outlines pathways of biodiversity effects across ecosystem boundaries on processes. It further proposes an agenda to assess such effects) 
  5. Dulamsuren Ch, Hauck M. (2021). Drought stress mitigation by nitrogen in boreal forests inferred from stable isotopes. Global Change Biology. DOI: 10.1111/gcb.15813 (This was the first study answering the question if co-limitation of forest productivity by nitrogen remains effective if boreal forests switch from temperature limitation to drought limitation.) 
  6. Pauliuk S, Heeren N, Berrill P, Fishman T, Nistad A, Tu Q, Wolfram P, Hertwich EG. (2021). Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nature Communications. DOI: 10.1038/s41467-021-25300-4 (First estimation of climate, energy, and materials impact of material efficiency and wood use in residential buildings, with global scope.) 
  7. Werner C, Meredith LS, Ladd SN, Ingrisch J, Kübert A, van Haren J, Bahn M, Bailey K, Bamberger I, Beyer M, Blomdahl D, Byron J, Daber E, Deleeuw J, Dippold M, Fudyma J, Gil-Loaiza J, Honeker LK, Hu J, Huang J, Klüpfel T, Krechmer J, Kreuzwieser J, Kühnhammer K, Lehmann MM, Meeran K, Misztal PK, Ng W-R, Pfannerstill E, Pugliese G, Purser G, Roscioli J, Shi L, Tfaily M, Williams J. (2021). Ecosystem fluxes during drought and recovery in an experimental forest. Science. DOI: 10.1126/science.abj6789 (This study describes the mechanisms and plant functional group responses to severe drought and recovery in a tropical forest.) 
  8. Fünfgeld H and Schmid B (2020): Justice in climate change adaptation planning: conceptual perspectives on emergent praxis. Geographica Helvetica, 75 (4): 437-449. DOI: 10.5194/gh-75-437-2020 (This conceptual paper develops the notion of justice-sensitive adaptation planning, based on empirical work on municipal climate change adaptation processes) 
  9. Haug M. (2020). Framing the Future through the Lens of Hope:Environmental Change, Diverse Hopes and the Challenge of Engagement. Journal of Social and Cultural Anthropology. URL: https://www.jstor.org/stable/27124116 (Publication that arose from a plenary event of the German Anthropological Assocations’ conference on the future of the discipline.) 
  10. Krayenhoff ES, Jiang T, Christen A, Martilli A, Oke TR, Bailey BN, Nazarian N, Voogt JA, Giometto MG, Stastny A, Crawford BR. (2020): A multi-layer urban canopy meteorological model with trees (BEP-Tree): Street tree impacts on pedestrian-level climate. Urban Climate. DOI: 10.1016/j.uclim.2020.100590 (This highly cited paper describes the development of a model that can simulate interactions between trees and surrounding infrastructure to model the local climate mitigation potential of trees.) 
  11. Biedermann PHW,Müller J, Grégoire JC, Gruppe A, Hagge J, Hammerbacher A, Hofstetter RW, Kandasamy D, Kolarik M, Kostovcik M, Krokene P. (2019). Bark beetle population dynamics in the Anthropocene: challenges and solutions. Trends in Ecology & Evolution. DOI: 10.1016/j.tree.2019.06.002 (Here we described the abiotic and biotic variables that drive bark beetle populations and highlight major gaps in our knowledge that need to be addressed for successful management of these forest insects.) 
  12. May S (2019) Wood. Regarding economies and policies through the eyes of a cultural anthropologist. Journal for European Ethnology and Cultural Analysis (JEECA) 3(2):193–214 (On a broad empirical basis, the author discusses how wood is currently used and given meaning and to what extent access via a material enables cultural anthropological analyses of economic and political fields).
  13. Messier C, Bauhus J, Doyon F, Maure F, Sousa-Silva R, Nolet P, Mina M, Aquilué N, Fortin M-J, Puettmann K. (2019). The functional complex network approach to foster forest resilience to global change. Forest Ecosystems. DOI: 10.1186/s40663-019-0199-6 (In this highly cited paper, we propose a novel approach to integrate the functionality of species-traits into a functional complex network approach as a flexible and multi-scale way to manage forests for the Anthropocene.) 
  14. Bachmair S, Tanguy M, Hannaford J, Stahl K. (2018). How well do meteorological indicators represent agricultural and forest drought across Europe? Environmental Research Letters. DOI: 10.1088/1748-9326/aaafda (This highly cited paper set a benchmark for the estimation of drought indices to assess drought impacts in forests.) 
  15. Heer K, Behringer D, Piermattei A, Bässler C, Brandl R, Fady B., Jehl H, Liepelt S, Lorch S, Piotti A, Vendramin GG, Weller M, Ziegenhagen B, Büntgen U, Opgenoorth L. (2018). Linking dendroecology and association genetics in natural populations: Stress responses archived in tree rings associate with SNP genotypes in silver fir (Abies alba Mill.). Molecular Ecology. DOI: 10.1111/mec.14538 (Paper demonstrates that analyses of phenotypic information from tree ring data and genetic data are a powerful resource to investigate the genetic basis of stress response in trees.) 
  16. Kleinschmit D, Pülzl H, Secco L, Sergent A, Wallin I. (2018). Orchestration in political processes: Involvement of experts, citizens, and participatory professionals in forest policy making. Forest Policy and Economics. DOI: 10.1016/j.forpol.2017.12.011 (This study clearly showed that governance by citizen participation is rather neglected in European forest policy.) 
  17. Orth R, Destouni G (2018) Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe. Nat Commun 9(1):3602. https://doi.org/10.1038/s41467-018-06013-7 (open access) (This study shows that soil-moisture drought reduces runoff stronger and faster than it reduces evapotranspiration over Europe and argues that understanding these drought-impact pathways across blue and green-water fluxes and geospheres is essential for ensuring water security, and developing early-warning and adaptation systems in support of society and ecosystems)
  18. Lang F, Krüger J, Amelung W, Willbold S, Frossard E, Bünemann EK, Bauhus J, Nitschke R, Kandeler E, Marhan S, Schulz S, Bergkemper F, Schloter M, Luster J, Guggisberg F, Kaiser K, Mikutta R, Guggenberger G, Polle A, Pena R, Prietzel J, Rodionov A, Talkner U, Meesenburg H, von Wilpert K, Hölscher A, Dietrich HP, Chmara I. (2017). Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry. DOI: 10.1007/s10533-017-0375-0 (First publication to explicitly describe forest ecosystem adaptation to low P levels in soils based on an interdisciplinary approach covering soil science, microbiology, and plant physiology.) 
  19. Sprenger M, Leistert H, Gimbel K, Weiler M. (2016). Illuminating hydrological processes at the soil‐vegetation‐atmosphere interface with water stable isotopes. Reviews of Geophysics. DOI: 10.1002/2015RG000515 (Highly cited paper that provides an overview of the hydrological processes that alter the soil water stable isotopic composition.) 
  20. Pregernig M.(2014). Framings of science-policy interactions and their discursive and institutional effects: examples from conservation and environmental policy. Biodiversity and Conservation. DOI: 10.1007/s10531-014-0806-3 (An early and well received paper that applies different theories of science-policy interactions on topics of biodiversity and conservation.) 
  21. Braunisch V, Coppes J, Arlettaz R, Suchant R, Schmid H, Bollmann K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography. DOI: 10.1111/j.1600-0587.2013.00138.x (Highly cited paper that investigated the uncertainty in predicting the future range shifts of species in central Europe under climate change, highlighting the importance of accounting for variable selection when making conservation decisions.) 
  22. Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs G-J, Zimmermann NE. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change. DOI: 10.1038/nclimate1687 (Highly cited paper that, for the first time, estimated the economic impacts of projected tree species changes under climate change on a European level.) 
  23. Knoke T, Seifert T. (2008). Integrating selected ecological effects of mixed European beech – Norway spruce stands in bioeconomic modelling. Ecological Modelling. DOI: 10.1016/j.ecolmodel.2007.08.011 (One of the first papers integrating economic and ecological perspectives of mixed forests into bioeconomic modelling of mixed forests.) 
  24. Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A, Jetz W, Kissling WD, Kühn I, Ohlemüller R, Peres-Neto PR, Reineking B, Schröder B, Schurr FM, Wilson R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography. DOI: 10.1111/j.2007.0906-7590.05171.x (Highly cited paper that provides a critical examination of the many available spatial statistical methods that take spatial autocorrelation into account in tests of species distribution data.) 
  25. Klein AM, Vaissière BE, Cane J, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences. DOI: 10.1098/rspb.2006.3721 (Highly cited paper that uses novel primary data from 200 countries to evaluate the extent of our reliance on animal pollination for global crop production and highlights the essential role of pollinators for sustaining crop diversity and production.)