Seal element of the university of freiburg in the shape of a clover

Publications

Please note that the linked pdf files may differ from the published versions.

Preprints

14 Sören Bartels, Klaus Deckelnick, and Dominik Schneider. Quasi-optimal error estimate for the approximation of the elastic flow of inextensible curves. 2025. bib | .pdf
13 Sören Bartels, Andrea Bonito, Peter Hornung, and Michael Neunteufel. Babuska’s paradox in a nonlinear bending model. 2025. bib | .pdf
12 Sören Bartels, Bernd Schmidt, and Philipp Tscherner. Numerical simulation of a fine-tunable Föppl-von Kármán model for foldable and bilayer plates. 2025. bib | .pdf
11 Sören Bartels, Klaus Böhnlein, Christian Palus, and Oliver Sander. Benchmarking numerical algorithms for harmonic maps into the sphere. 2024. bib | .pdf
10 Harbir Antil, Sören Bartels, Alex Kaltenbach, and Rohit Khandelwal. Variational problems with gradient constraints: A priori and a posteriori error identities. 2024. bib | .pdf
9 Sören Bartels, Giuseppe Buttazzo, and Hedwig Keller. Optimization of an eigenvalue arising in optimal insulation with a lower bound. 2024. bib | .pdf
8 Sören Bartels, Thirupathi Gudi, and Alex Kaltenbach. A priori and a posteriori error identities for the scalar signorini problem. 2024. bib | .pdf
7 Sören Bartels and Alex Kaltenbach. Exact a posteriori error control for variational problems via convex duality and explicit flux reconstruction. 2024. bib | .pdf
6 Sören Bartels and Philipp Tscherner. Necessary and sufficient conditions for avoiding Babuska’s paradox on simplicial meshes. 2024. bib | .pdf
5 Sören Bartels, Hedwig Keller, and Gerd Wachsmuth. Numerical approximation of optimal convex shapes in R3. bib | .pdf
4 Georgios Akrivis, Sören Bartels, and Christian Palus. Quadratic constraint consistency in the projection-free approximation of harmonic maps and bending isometries. 2023. bib | .pdf
3 Sören Bartels and Alex Kaltenbach. Explicit a posteriori error representation for variational problems and application to tv-minimization. 2023. bib | .pdf
2 Sören Bartels and Alex Kaltenbach. Error analysis for a Crouzeix-Raviart approximation of the obstacle problem. 2023. bib | .pdf
1 Sören Bartels, Max Griehl, Jakob Keck, and Stefan Neukamm. Modeling and simulation of nematic LCE rods. 2022. bib | .pdf

Articles

101 Sören Bartels, Balázs Kovács, and Zhangxian Wang. Error analysis for the numerical approximation of the harmonic map heat flow with nodal constraints. IMA J. Numer. Anal., 44(2):633–653, 2024. bib | DOI | http | .pdf
100 Sören Bartels, Andrea Bonito, and Philipp Tscherner. Error estimates for a linear folding model. IMA J. Numer. Anal., 44(1):1–23, 2024. bib | DOI | http | .pdf
99 Sören Bartels, Christian Palus, and Zhangxian Wang. Quasi-optimal error estimates for the finite element approximation of stable harmonic maps with nodal constraints. SIAM J. Numer. Anal., 61(4):1819–1834, 2023. bib | DOI | http | .pdf
98 Harbir Antil, Sören Bartels, and Armin Schikorra. Approximation of fractional harmonic maps. IMA J. Numer. Anal., 43(3):1291–1323, 2023. bib | DOI | http | .pdf
97 Sören Bartels, Max Griehl, Stefan Neukamm, David Padilla-Garza, and Christian Palus. A nonlinear bending theory for nematic LCE plates. Math. Models Methods Appl. Sci., 33(7):1437–1516, 2023. bib | DOI | http | .pdf
96 Sören Bartels and Alex Kaltenbach. Explicit and efficient error estimation for convex minimization problems. Math. Comp., 92(343):2247–2279, 2023. bib | DOI | http | .pdf
95 Sören Bartels and Nico Weber. Parameter learning and fractional differential operators: applications in regularized image denoising and decomposition problems. Math. Control Relat. Fields, 13(1):35–62, 2023. bib | DOI | http | .pdf
94 Sören Bartels, Andrea Bonito, and Peter Hornung. Modeling and simulation of thin sheet folding. Interfaces Free Bound., 24(4):459–485, 2022. bib | DOI | http | .pdf
93 Sören Bartels and Alex Kaltenbach. Error estimates for total-variation regularized minimization problems with singular dual solutions. Numer. Math., 152(4):881–906, 2022. bib | DOI | http | .pdf
92 Sören Bartels and Pascal Weyer. Computing confined elasticae. Adv. Contin. Discrete Models, pages Paper No. 58, 16, 2022. bib | DOI | http | .pdf
91 Sören Bartels, Robert Tovey, and Friedrich Wassmer. Singular solutions, graded meshes,and adaptivity for total-variation regularized minimization problems. ESAIM Math. Model. Numer. Anal., 56(6):1871–1888, 2022. bib | DOI | http | .pdf
90 Sören Bartels and Christian Palus. Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints. IMA J. Numer. Anal., 42(3):1903–1928, 2022. bib | DOI | http | .pdf
89 Sören Bartels, Hedwig Keller, and Gerd Wachsmuth. Numerical approximation of optimal convex and rotationally symmetric shapes for an eigenvalue problem arising in optimal insulation. Comput. Math. Appl., 119:327–339, 2022. bib | DOI | http | .pdf
88 Sören Bartels, Frank Meyer, and Christian Palus. Simulating self-avoiding isometric plate bending. SIAM J. Sci. Comput., 44(3):A1475–A1496, 2022. bib | DOI | http | .pdf
87 Sören Bartels, Marijo Milicevic, Marita Thomas, Sven Tornquist, and Nico Weber. Approximation schemes for materials with discontinuities. In Non-standard discretisation methods in solid mechanics, volume 98 of Lect. Notes Appl. Comput. Mech., pages 505–565. Springer, Cham, [2022] (c)2022. bib | DOI | http | .pdf
86 Sören Bartels and Stephan Hertzog. Error bounds for discretized optimal transport and its reliable efficient numerical solution. In Non-smooth and complementarity-based distributed parameter systems—simulation and hierarchical optimization, volume 172 of Internat. Ser. Numer. Math., pages 1–20. Birkhäuser/Springer, Cham, 2022. bib | .pdf
85 Sören Bartels. Error estimates for a class of discontinuous Galerkin methods for nonsmooth problems via convex duality relations. Math. Comp., 90(332):2579–2602, 2021. bib | DOI | http | .pdf
84 Sören Bartels. Simulation of constrained elastic curves and application to a conical sheet indentation problem. IMA J. Numer. Anal., 41(3):2255–2279, 2021. bib | DOI | http | .pdf
83 Sören Bartels and Philipp Reiter. Stability of a simple scheme for the approximation of elastic knots and self-avoiding inextensible curves. Math. Comp., 90(330):1499–1526, 2021. bib | DOI | http | .pdf
82 Sören Bartels and Zhangxian Wang. Orthogonality relations of Crouzeix-Raviart and Raviart-Thomas finite element spaces. Numer. Math., 148(1):127–139, 2021. bib | DOI | http | .pdf
81 Sören Bartels. Nonconforming discretizations of convex minimization problems and precise relations to mixed methods. Comput. Math. Appl., 93:214–229, 2021. bib | DOI | http | .pdf
80 Sören Bartels and Jakob Keck. Adaptive time stepping in elastoplasticity. Discrete Contin. Dyn. Syst. Ser. S, 14(1):71–88, 2021. bib | DOI | http | .pdf
79 Sören Bartels. Finite element simulation of nonlinear bending models for thin elastic rods and plates. In Geometric partial differential equations. Part I, volume 21 of Handb. Numer. Anal., pages 221–273. Elsevier/North-Holland, Amsterdam, [2020] (c)2020. bib | .pdf
78 Sören Bartels and Philipp Reiter. Numerical solution of a bending-torsion model for elastic rods. Numer. Math., 146(4):661–697, 2020. bib | DOI | http | .pdf
77 Sören Bartels. Numerical simulation of inextensible elastic ribbons. SIAM J. Numer. Anal., 58(6):3332–3354, 2020. bib | DOI | http | .pdf
76 Sören Bartels and Marijo Milicevic. Primal-dual gap estimators for a posteriori error analysis of nonsmooth minimization problems. ESAIM Math. Model. Numer. Anal., 54(5):1635–1660, 2020. bib | DOI | http | .pdf
75 Sören Bartels and Marijo Milicevic. Efficient iterative solution of finite element discretized nonsmooth minimization problems. Comput. Math. Appl., 80(5):588–603, 2020. bib | DOI | http | .pdf
74 Sören Bartels and Gerd Wachsmuth. Numerical approximation of optimal convex shapes. SIAM J. Sci. Comput., 42(2):A1226–A1244, 2020. bib | DOI | http | .pdf
73 Sören Bartels and Michael Ružička. Convergence of fully discrete implicit and semi-implicit approximations of singular parabolic equations. SIAM J. Numer. Anal., 58(1):811–833, 2020. bib | DOI | http | .pdf
72 Sören Bartels and Giuseppe Buttazzo. Numerical solution of a nonlinear eigenvalue problem arising in optimal insulation. Interfaces Free Bound., 21(1):1–19, 2019. bib | DOI | http | .pdf
71 Sören Bartels, Lars Diening, and Ricardo H. Nochetto. Unconditional stability of semi-implicit discretizations of singular flows. SIAM J. Numer. Anal., 56(3):1896–1914, 2018. bib | DOI | http | .pdf
70 Sören Bartels, Philipp Reiter, and Johannes Riege. A simple scheme for the approximation of self-avoiding inextensible curves. IMA J. Numer. Anal., 38(2):543–565, 2018. bib | DOI | http | .pdf
69 Sören Bartels, Marijo Milicevic, and Marita Thomas. Numerical approach to a model for quasistatic damage with spatial BV-regularization. In Trends in applications of mathematics to mechanics, volume 27 of Springer INdAM Ser., pages 179–203. Springer, Cham, 2018. bib | .pdf
68 Sören Bartels, Andrea Bonito, Anastasia H. Muliana, and Ricardo H. Nochetto. Modeling and simulation of thermally actuated bilayer plates. J. Comput. Phys., 354:512–528, 2018. bib | DOI | http | .pdf
67 Sören Bartels and Patrick Schön. Adaptive approximation of the Monge-Kantorovich problem via primal-dual gap estimates. ESAIM Math. Model. Numer. Anal., 51(6):2237–2261, 2017. bib | DOI | http | .pdf
66 Harbir Antil and Sören Bartels. Spectral approximation of fractional PDEs in image processing and phase field modeling. Comput. Methods Appl. Math., 17(4):661–678, 2017. bib | DOI | http | .pdf
65 Sören Bartels and Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete Contin. Dyn. Syst. Ser. S, 10(6):1207–1232, 2017. bib | DOI | http | .pdf
64 Sören Bartels. Numerical solution of a Föppl–von Kármán model. SIAM J. Numer. Anal., 55(3):1505–1524, 2017. bib | DOI | http | .pdf
63 Sören Bartels, Andrea Bonito, and Ricardo H. Nochetto. Bilayer plates: model reduction, Γ-convergent finite element approximation, and discrete gradient flow. Comm. Pure Appl. Math., 70(3):547–589, 2017. bib | DOI | http | .pdf
62 Sören Bartels. A simple scheme for the approximation of elastic vibrations of inextensible curves. IMA J. Numer. Anal., 36(3):1051–1071, 2016. bib | DOI | http | .pdf
61 Sören Bartels and Marijo Milicevic. Stability and experimental comparison of prototypical iterative schemes for total variation regularized problems. Comput. Methods Appl. Math., 16(3):361–388, 2016. bib | DOI | http | .pdf
60 Sören Bartels. Broken Sobolev space iteration for total variation regularized minimization problems. IMA J. Numer. Anal., 36(2):493–502, 2016. bib | DOI | http | .pdf
59 Sören Bartels. Projection-free approximation of geometrically constrained partial differential equations. Math. Comp., 85(299):1033–1049, 2016. bib | DOI | http | .pdf
58 Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. A total variation diminishing interpolation operator and applications. Math. Comp., 84(296):2569–2587, 2015. bib | DOI | http | .pdf
57 Sören Bartels. Fast and accurate finite element approximation of wave maps into spheres. ESAIM Math. Model. Numer. Anal., 49(2):551–558, 2015. bib | DOI | http | .pdf
56 Sören Bartels. Robustness of error estimates for phase field models at a class of topological changes. Comput. Methods Appl. Mech. Engrg., 288:75–82, 2015. bib | DOI | http | .pdf
55 Sören Bartels and Peter Hornung. Bending paper and the Möbius strip. J. Elasticity, 119(1-2):113–136, 2015. bib | DOI | http | .txt
54 Sören Bartels. Error control and adaptivity for a variational model problem defined on functions of bounded variation. Math. Comp., 84(293):1217–1240, 2015. bib | DOI | http | .pdf
53 Sören Bartels, Mario Bebendorf, and Michael Bratsch. A fast and accurate numerical method for the computation of unstable micromagnetic configurations. In Singular phenomena and scaling in mathematical models, pages 413–434. Springer, Cham, 2014. bib | DOI | http | .pdf
52 Sören Bartels and Alexander Raisch. Simulation of Q-tensor fields with constant orientational order parameter in the theory of uniaxial nematic liquid crystals. In Singular phenomena and scaling in mathematical models, pages 383–412. Springer, Cham, 2014. bib | DOI | http | .pdf
51 Sören Bartels. Quasi-optimal error estimates for implicit discretizations of rate-independent evolutions. SIAM J. Numer. Anal., 52(2):708–716, 2014. bib | DOI | http | .pdf
50 Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. Discrete total variation flows without regularization. SIAM J. Numer. Anal., 52(1):363–385, 2014. bib | DOI | http | .pdf
49 Sören Bartels. A simple scheme for the approximation of the elastic flow of inextensible curves. IMA J. Numer. Anal., 33(4):1115–1125, 2013. bib | DOI | http | .pdf
48 Sören Bartels and Tomáš Roubíček. Numerical approaches to thermally coupled perfect plasticity. Numer. Methods Partial Differential Equations, 29(6):1837–1863, 2013. bib | .pdf
47 Sören Bartels. Finite element approximation of large bending isometries. Numer. Math., 124(3):415–440, 2013. bib | DOI | http | .pdf
46 Sören Bartels. Approximation of large bending isometries with discrete Kirchhoff triangles. SIAM J. Numer. Anal., 51(1):516–525, 2013. bib | DOI | http | .pdf
45 Sören Bartels. Total variation minimization with finite elements: convergence and iterative solution. SIAM J. Numer. Anal., 50(3):1162–1180, 2012. bib | DOI | http | .pdf
44 Sören Bartels and Patrick Schreier. Local coarsening of simplicial finite element meshes generated by bisections. BIT, 52(3):559–569, 2012. bib | DOI | http | .pdf
43 Sören Bartels, Georg Dolzmann, Ricardo H. Nochetto, and Alexander Raisch. Finite element methods for director fields on flexible surfaces. Interfaces Free Bound., 14(2):231–272, 2012. bib | DOI | http | .pdf
42 Sören Bartels, Alexander Mielke, and Tomáš Roubíček. Quasi-static small-strain plasticity in the limit of vanishing hardening and its numerical approximation. SIAM J. Numer. Anal., 50(2):951–976, 2012. bib | DOI | http | .pdf
41 Sören Bartels and Martin Kružík. An efficient approach to the numerical solution of rate-independent problems with nonconvex energies. Multiscale Model. Simul., 9(3):1276–1300, 2011. bib | DOI | http | .pdf
40 Sören Bartels and Rüdiger Müller. Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. Numer. Math., 119(3):409–435, 2011. bib | DOI | http | .pdf
39 Sören Bartels and Tomáš Roubíček. Thermo-visco-elasticity with rate-independent plasticity in isotropic materials undergoing thermal expansion. ESAIM Math. Model. Numer. Anal., 45(3):477–504, 2011. bib | DOI | http | .pdf
38 Sören Bartels and Rüdiger Müller. Quasi-optimal and robust a posteriori error estimates in L(L2) for the approximation of Allen-Cahn equations past singularities. Math. Comp., 80(274):761–780, 2011. bib | DOI | http | .pdf
37 Sören Bartels, Rüdiger Müller, and Christoph Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. SIAM J. Numer. Anal., 49(1):110–134, 2011. bib | DOI | http | .pdf
36 Sören Bartels. Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces. Math. Comp., 79(271):1263–1301, 2010. bib | DOI | http | .pdf
35 Sören Bartels, Georg Dolzmann, and Ricardo H. Nochetto. A finite element scheme for the evolution of orientation order in fluid membranes. M2AN Math. Model. Numer. Anal., 44(1):1–31, 2010. bib | DOI | http | .pdf
34 Sören Bartels and Rüdiger Müller. A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations. Interfaces Free Bound., 12(1):45–73, 2010. bib | DOI | http | .pdf
33 Sören Bartels, Max Jensen, and Rüdiger Müller. Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal., 47(5):3720–3743, 2009. bib | DOI | http | .pdf
32 Sören Bartels. Semi-implicit approximation of wave maps into smooth or convex surfaces. SIAM J. Numer. Anal., 47(5):3486–3506, 2009. bib | DOI | http | .pdf
31 Sören Bartels, Christian Lubich, and Andreas Prohl. Convergent discretization of heat and wave map flows to spheres using approximate discrete Lagrange multipliers. Math. Comp., 78(267):1269–1292, 2009. bib | DOI | http | .pdf
30 Sören Bartels. Combination of global and local approximation schemes for harmonic maps into spheres. J. Comput. Math., 27(2-3):170–183, 2009. bib | www:
29 Sören Bartels and Tomáš Roubíček. Thermoviscoplasticity at small strains. ZAMM Z. Angew. Math. Mech., 88(9):735–754, 2008. bib | DOI | http | .pdf
28 Sören Bartels and Andreas Prohl. Convergence of an implicit, constraint preserving finite element discretization of p-harmonic heat flow into spheres. Numer. Math., 109(4):489–507, 2008. bib | DOI | http | .pdf
27 L’ubomír Baňas, Sören Bartels, and Andreas Prohl. A convergent implicit finite element discretization of the Maxwell-Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal., 46(3):1399–1422, 2008. bib | DOI | http | .pdf
26 Sören Bartels, Joy Ko, and Andreas Prohl. Numerical analysis of an explicit approximation scheme for the Landau-Lifshitz-Gilbert equation. Math. Comp., 77(262):773–788, 2008. bib | DOI | http | .pdf
25 Sören Bartels and Carsten Carstensen. A convergent adaptive finite element method for an optimal design problem. Numer. Math., 108(3):359–385, 2008. bib | DOI | http | .pdf
24 Sören Bartels, Xiaobing Feng, and Andreas Prohl. Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal., 46(1):61–87, 2007/08. bib | DOI | http | .pdf
23 Sören Bartels and Andreas Prohl. Stable discretization of scalar and constrained vectorial Perona-Malik equation. Interfaces Free Bound., 9(4):431–453, 2007. bib | DOI | http | .pdf
22 Sören Bartels and Andreas Prohl. Constraint preserving implicit finite element discretization of harmonic map flow into spheres. Math. Comp., 76(260):1847–1859, 2007. bib | DOI | http | .pdf
21 John W. Barrett, Sören Bartels, Xiaobing Feng, and Andreas Prohl. A convergent and constraint-preserving finite element method for the p-harmonic flow into spheres. SIAM J. Numer. Anal., 45(3):905–927, 2007. bib | DOI | http | .pdf
20 Sören Bartels, Carsten Carstensen, Sergio Conti, Klaus Hackl, Ulrich Hoppe, and Antonio Orlando. Relaxation and the computation of effective energies and microstructures in solid mechanics. In Analysis, modeling and simulation of multiscale problems, pages 197–224. Springer, Berlin, 2006. bib | DOI | http | .pdf
19 Sören Bartels and Andreas Prohl. Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation. SIAM J. Numer. Anal., 44(4):1405–1419, 2006. bib | DOI | http | .pdf
18 S. Bartels, C. Carstensen, and A. Hecht. P2Q2Iso2D=2D isoparametric FEM in Matlab. J. Comput. Appl. Math., 192(2):219–250, 2006. bib | DOI | http | .pdf
17 Sören Bartels. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. M2AN Math. Model. Numer. Anal., 39(5):863–882, 2005. bib | DOI | http | .pdf
16 Sören Bartels. Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal., 43(1):363–385, 2005. bib | DOI | http | .pdf
15 Sören Bartels. Stability and convergence of finite-element approximation schemes for harmonic maps. SIAM J. Numer. Anal., 43(1):220–238, 2005. bib | DOI | http | .pdf
14 Sören Bartels. A posteriori error analysis for time-dependent Ginzburg-Landau type equations. Numer. Math., 99(4):557–583, 2005. bib | DOI | http | .pdf
13 Sören Bartels and Tomáš Roubíček. Linear-programming approach to nonconvex variational problems. Numer. Math., 99(2):251–287, 2004. bib | DOI | http | .pdf
12 S. Bartels and C. Carstensen. Averaging techniques yield reliable a posteriori finite element error control for obstacle problems. Numer. Math., 99(2):225–249, 2004. bib | DOI | http | .pdf
11 Sören Bartels. Linear convergence in the approximation of rank-one convex envelopes. M2AN Math. Model. Numer. Anal., 38(5):811–820, 2004. bib | DOI | http | .pdf
10 S. Bartels, C. Carstensen, K. Hackl, and U. Hoppe. Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Engrg., 193(48-51):5143–5175, 2004. bib | DOI | http | .pdf
9 S. Bartels, C. Carstensen, and G. Dolzmann. Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis. Numer. Math., 99(1):1–24, 2004. bib | DOI | http | .pdf
8 Sören Bartels. Adaptive approximation of Young measure solutions in scalar nonconvex variational problems. SIAM J. Numer. Anal., 42(2):505–530, 2004. bib | DOI | http | .pdf
7 S. Bartels, C. Carstensen, P. Plecháč, and A. Prohl. Convergence for stabilisation of degenerately convex minimisation problems. Interfaces Free Bound., 6(2):253–269, 2004. bib | DOI | http | .pdf
6 Sören Bartels and Andreas Prohl. Multiscale resolution in the computation of crystalline microstructure. Numer. Math., 96(4):641–660, 2004. bib | DOI | http | .pdf
5 Carsten Carstensen, Sören Bartels, and Stefan Jansche. A posteriori error estimates for nonconforming finite element methods. Numer. Math., 92(2):233–256, 2002. bib | DOI | http | .pdf
4 Sören Bartels and Carsten Carstensen. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. II. Higher order FEM. Math. Comp., 71(239):971–994, 2002. bib | DOI | http | .pdf
3 Carsten Carstensen and Sören Bartels. Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM. Math. Comp., 71(239):945–969, 2002. bib | DOI | http | .pdf
2 Carsten Carstensen, Sören Bartels, and Roland Klose. An experimental survey of a posteriori Courant finite element error control for the Poisson equation. Adv. Comput. Math., 15(1-4):79–106 (2002), 2001. A posteriori error estimation and adaptive computational methods. bib | DOI | http | .pdf
1 Sören Bartels, Carsten Carstensen, and Petr Plecháč. Finite element computation of macroscopic quantities in nonconvex minimisation problems and applications in materials science. In Multifield problems, pages 69–79. Springer, Berlin, 2000. bib | .pdf

Books

3 Sören Bartels. Numerical approximation of partial differential equations, volume 64 of Texts in Applied Mathematics. Springer, [Cham], 2016. bib | DOI | http
2 Sören Bartels. Numerik 3×9. Springer-Lehrbuch. Springer Spektrum, 2016. bib | DOI | http
1 Sören Bartels. Numerical methods for nonlinear partial differential equations, volume 47 of Springer Series in Computational Mathematics. Springer, Cham, 2015. bib | DOI | http

Lecture notes

2 Sören Bartels. Einführung in die Programmierung für Studierende der Naturwissenschaften. Vorlesungsskript, 2018. bib | .pdf
1 Sören Bartels. Numerical solution of nonsmooth problems. Lecture notes of a course given at the SAMM 2015, 2015. bib | .pdf

Proceedings

14 Sören Bartels, Andrea Bonito, Peter Hornung, and Philipp Tscherner. Modeling and simulation of thin sheet folding. Oberwolfach Reports, 2021. Oberwolfach Workshop on: Numerical Methods for Fully Nonlinear and Related PDEs. bib | DOI
13 Sören Bartels and Philipp Reiter. Simulation of elastic knots and inextensible elastic curves. Oberwolfach Reports, 2019. Oberwolfach Workshop on: Surface, Bulk, and Geometric Partial Differential Equations: Interfacial, stochastic, non-local and discrete structures. bib | DOI
12 Sören Bartels. Finite element methods for nonsmooth problems and application to a problem in optimal insulation. Oberwolfach Reports, 2018. Oberwolfach Workshop on: Computational Engineering. bib | DOI
11 Sören Bartels, Stephan Hertzog, Marijo Milicevic, and Patrick Schön. Numerical methods for optimal transportation. Oberwolfach Reports, 2017. Oberwolfach Workshop on: Emerging Effects in Interfaces and Free Boundaries. bib | DOI
10 Sören Bartels, Andrea Bonito, and Ricardo H. Nochetto. Numerical methods for bilayer bending problems. Oberwolfach Reports, 2015. Oberwolfach Workshop on: Geometric Partial Differential Equations: Surface and Bulk Processes. bib | DOI
9 Sören Bartels, Ricardo H. Nochetto, and Abner J. Salgado. Total variation minimization with finite elements. Oberwolfach Reports, 2013. Oberwolfach Workshop on: Interfaces and Free Boundaries: Analysis, Control and Simulation. bib | DOI
8 Sören Bartels and Martin Kružík. An efficient approach to numerical solutions of multi-well variational problems. Oberwolfach Reports, 1(7):780–783, 2010. Oberwolfach Workshop on: Microstructures in Solids: From Quantum Models to Continua. bib | DOI
7 Sören Bartels and Rüdiger Müller. Numerical analysis for phase field simulations of moving interfaces with topological changes. Proc. Appl. Math. Mech, 10(1), 2010. bib | DOI | .pdf
6 Sören Bartels. Approximation of harmonic maps and wave maps. Oberwolfach Reports, 5(3):2037–2038, 2008. Oberwolfach Workshop on Nonstandard Finite Element Methods. bib | DOI | .pdf
5 Sören Bartels, Georg Dolzmann, and Ricardo H. Nochetto. Analysis and numerical simulation of the evolution of patterns in the gel phase of lipid membranes. Oberwolfach Reports, 5(3):2318–2321, 2008. Oberwolfach Mini-Workshop on: Mathematics of Biological Membranes. bib | DOI
4 Sören Bartels and Rüdiger Müller. Robust error estimates for adaptive phase field simulations. Proc. Appl. Math. Mech, 8(1):10983 — 10984, 2008. bib | DOI | .pdf
3 Sören Bartels and Rüdiger Müller. Robust a-posteriori error control of Cahn-Hilliard type equations with elasticity. Proc. Appl. Math. Mech, 7(1):1023305 — 1023306, 2007. bib | DOI | .pdf
2 Sören Bartels. Constraint preserving, inexact solution of implicit discretizations of Landau–Lifshitz–Gilbert equations and consequences for convergence. Proc. Appl. Math. Mech, 6(1):19–22, 2006. bib | DOI | .pdf
1 Sören Bartels. Error estimates for the adaptive computation of a scalar three well problem. Proc. Appl. Math. Mech, 1(1):502–503, 2002. bib | DOI | .pdf

Theses

4 Sören Bartels. Finite element approximation of harmonic maps betweeen surfaces. Habilitation thesis, Humboldt Universität zu Berlin, Germany, 2009. bib | .pdf
3 Sören Bartels. Numerical analysis of some nonconvex variational problems. Ph.D. thesis, Christian–Albrechts-Universität zu Kiel, Germany, 2001. bib | .pdf
2 Sören Bartels. Theorie und Numerik retardierter Integralgleichungen elektromagnetischer Streufelder. Diploma thesis, Christian–Albrechts-Universität zu Kiel, Germany, 1999. bib | .pdf
1 Sören Bartels. Numerical analysis of retarded potential integral equations of electromagnetism. Master thesis, Heriot–Watt University Edinburgh, Scotland, UK, 1998. bib | .pdf