| 106 |
J. Jeßberger and M. Růžička. Weak solutions for steady, fully inhomogeneous generalized Navier-Stokes equations. Nonlinear Anal., 253:Paper No. 113715, 12, 2025. |
bib | DOI | http |
| 105 |
L. C. Berselli, A. Kaltenbach, and M. Růžička. Energy conservation for weak solutions of incompressible Newtonian fluid equations in Hölder spaces with Dirichlet boundary conditions in the half-space. Math. Ann., 391(4):5911–5940, 2025. |
bib | DOI | http |
| 104 |
A. Passerini, B. Rummler, M. Růžička, and G. Thäter. Natural convection in the horizontal annulus: Critical Rayleigh number for the steady problem. ZAMM Z. Angew. Math. Mech., 105(3):Paper No. e202300535, 23, 2025. |
bib | DOI |
| 103 |
A. Kaltenbach and M. Růžička. Note on quasi-optimal error estimates for the pressure for shear-thickening fluids. ESAIM Math. Model. Numer. Anal., 58(5):1907–1933, 2024. |
bib | DOI | http |
| 102 |
K. Kang and M. Růžička. Liouville type problem for the steady p-Stokes system in the half-space. J. Diff. Equa., 414:455–486, 2024. |
bib | DOI |
| 101 |
A. Kaltenbach and M. Růžička. Existence of steady solutions for a general model for micropolar electrorheological fluid flows. SIAM J. Math. Anal., 55:2238–2260, 2023. |
bib | DOI | http |
| 100 |
A. Kaltenbach and M. Růžička. Analysis of a fully-discrete, non-conforming approximation of evolution equations and applications. Math. Models Methods Appl. Sci., 33:1147–1192, 2023. |
bib | DOI | http |
| 99 |
A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part III: Convergence rates for the pressure. SIAM J. Num. Anal., 61:1763–1782, 2023. |
bib | DOI | http |
| 98 |
A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part II: Convergence rates for the velocity. SIAM J. Num. Anal., 61:1641–1663, 2023. |
bib | DOI | http |
| 97 |
A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part I: Convergence analysis. SIAM J. Num. Anal., 61:1613–1640, 2023. |
bib | DOI | http |
| 96 |
A. Kaltenbach and M. Růžička. Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure. ESAIM Math. Model. Numer. Anal., 57(3):1381–1411, 2023. |
bib | DOI | http |
| 95 |
A. Kaltenbach and M. Růžička. Existence of steady solutions for a model for micropolar electrorheological fluid flows with not globally log –Hölder continuous shear exponent. J. Math. Fluid Mech., 25:Paper No. 40, 2023. |
bib | DOI | http |
| 94 |
L. C. Berselli, A. Kaltenbach, R. Lewandowski, and M. Růžička. On the existence of weak solutions for a family of unsteady rotational Smagorinsky models. Pure Appl. Funct. Anal., 8(1):83–102, 2023. |
bib | DOI | http |
| 93 |
L. C. Berselli and M. Růžička. Natural second-order regularity for systems in the case 1<p<=2 using the A-approximation. In A. Carapau, F. Vaidya, editor, Recent Advances in Mechanics and Fluid-Structure Interaction with Applications: The Bong Jae Chung Memorial Volume, pages 3–37. Springer International Publishing, 2022. |
bib | DOI | http |
| 92 |
L. C. Berselli and M. Růžička. Natural second-order regularity for parabolic systems with operators having (p,δ)-structure and depending only on the symmetric gradient. Calc. Var. PDEs, page Paper No. 137, 2022. |
bib | DOI | http |
| 91 |
L. C. Berselli and M. Růžička. Space-time discretization for nonlinear parabolic systems with p-structure. IMA J. Numerical Analysis, 42:260–299, 2022. |
bib | DOI | http |
| 90 |
H. Eberlein and M. Růžička. Global weak solutions for an Newtonian fluid interacting with a Koiter type shell under natural boundary conditions. DCDS-S, pages 4093–4140, 2021. |
bib | DOI | http |
| 89 |
L. C. Berselli and M. Ružička. Optimal error estimate for a space-time discretization for incompressible generalized Newtonian fluids: the Dirichlet problem. Partial Differ. Equ. Appl., 2(4):Paper No. 59, 2021. |
bib | DOI | http |
| 88 |
L. C. Berselli, A. Kaltenbach, and M. Ružička. Analysis of fully discrete, quasi non-conforming approximations of evolution equations and applications. Math. Models Methods Appl. Sci., 31(11):2297–2343, 2021. |
bib | DOI | http |
| 87 |
J. Jeßberger and M. Ružička. Existence of weak solutions for inhomogeneous generalized Navier-Stokes equations. Nonlinear Anal., 212:Paper No. 112538, 16, 2021. |
bib | DOI | http |
| 86 |
A. Kaltenbach and M. Ružička. Variable exponent Bochner-Lebesgue spaces with symmetric gradient structure. J. Math. Anal. Appl., 503(2):Paper No. 125355, 34, 2021. |
bib | DOI | http |
| 85 |
M. Křepela and M. Růžička. Addendum to “A counterexample related to the regularity of the p-Stokes problem”. J. Math. Science, 247(6):957–959, 2020. |
bib |
| 84 |
L. C. Berselli and M. Růžička. On the regularity of solution to the time-dependent p-Stokes system. Opuscula Math., 40(1):49–69, 2020. |
bib | DOI |
| 83 |
A. Kaltenbach and M. Růžička. Note on the existence theory for pseudo-monotone evolution problems. J. Evol. Equ., 21(1):247–276, 2021. |
bib | DOI | http |
| 82 |
S. Bartels and M. Růžička. Convergence of fully discrete implicit and semi-implicit approximations of singular parabolic equations. SIAM J. Numer. Anal., 58(1):811–833, 2020. |
bib | DOI | http |
| 81 |
M. Křepela and M. Růžička. Solenoidal difference quotients and their application to the regularity theory of the p-Stokes system. Calc. Var. Partial Differential Equations, 59(1):Paper No. 34, 24, 2020. |
bib | DOI | http |
| 80 |
L. C. Berselli and M. Růžička. Global regularity for systems with p-structure depending on the symmetric gradient. Adv. Nonlinear Anal., 9(1):176–192, 2020. |
bib | DOI | http |
| 79 |
S. Eckstein and M. Růžička. On the full space–time discretization of the generalized Stokes equations: The Dirichlet case. SIAM J. Numer. Anal., 56(4):2234–2261, 2018. |
bib | DOI | http |
| 78 |
M. Křepela and M. Růžička. A counterexample related to the regularity of the p-Stokes problem. J. Math. Science, 232 (3):390–401, 2018. translated from Problemy Matematicheskogo Analiza 92, 2018, pp. 159–168. |
bib | DOI | http |
| 77 |
P. Nägele and M. Růžička. Generalized Newtonian fluids in moving domains. J. Differential Equations, 264(2):835–866, 2018. |
bib | DOI | http |
| 76 |
T. Malkmus, M. Růžička, S. Eckstein, and I. Toulopoulos. Generalizations of SIP methods to systems with p-structure. IMA J. Numer. Anal., 38(3):1420–1451, 2018. |
bib | DOI | http |
| 75 |
B. Rummler, M. Růžička, and G. Thäter. Exact Poincaré constants in two-dimensional annuli. ZAMM Z. Angew. Math. Mech., 97(1):110–122, 2017. |
bib | DOI | http |
| 73 |
E. Bäumle and M. Růžička. Note on the existence theory for evolution equations with pseudo-monotone operators. Ric. Mat., 66(1):35–50, 2017. |
bib | DOI | http |
| 72 |
E. Bäumle and M. Růžička. Existence of weak solutions for unsteady motions of micro-polar electrorheological fluids. SIAM J. Math. Anal., 49(1):115–141, 2017. |
bib | DOI | http |
| 71 |
L. C. Berselli and M. Růžička. Global regularity properties of steady shear thinning flows. J. Math. Anal. Appl., 450(2):839––871, 2017. |
bib | DOI | http |
| 70 |
P. Nägele, M. Růžička, and D. Lengeler. Functional setting for unsteady problems in moving domains and applications. Comp. Var. Ell. Syst., 62(1):66–97, 2016. |
bib | DOI | http |
| 69 |
E. Molitor and M. Růžička. On inhomogeneous p-Navier-Stokes systems. In V. Radulescu, A. Sequeira, and V. Solonnikov, editors, Recent Advances in PDEs and Applications, volume 666 of Contemp. Math., pages 317–340. AMS Proceedings, 2016. |
bib |
| 68 |
L. Diening, M. Růžička, and K. Schumacher. A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math., 35(1):87–114, 2010. |
bib | DOI | http |
| 67 |
W. Eckart and M. Růžička. Modeling micropolar electrorheological fluids. Int. J. Appl. Mech. Eng., 11:813–844, 2006. |
bib |
| 66 |
Y. Kagei and M. Růžička. The Oberbeck-Boussinesq approximation as a constitutive limit. Continuum Mech. Thermodyn., 28(5):1411–1419, 2016. |
bib | DOI | http |
| 65 |
K.R. Rajagopal and M. Růžička. Mathematical modeling of electrorheological materials. Continuum Mechanics and Thermodynamics, 13(1):59–78, 2001. |
bib | DOI | http |
| 64 |
K.R. Rajagopal and M. Růžička. On the modeling of electrorheological materials. Mech. Research Comm., 23(4):401–407, 1996. |
bib | DOI | http |
| 63 |
Michael Růžička. Mathematical and physical theory of multipolar viscoelasticity. Bonner Mathematische Schriften [Bonn Mathematical Publications], 233. Universität Bonn, Mathematisches Institut, Bonn, 1992. |
bib |
| 62 |
J. Nečas and M. Růžička. A dynamic problem of thermoelasticity. Z. Anal. Anwendungen, 10(3):357–368, 1991. |
bib |
| 61 |
Jindřich Nečas and Michael Růžička. Global solution to the incompressible viscous-multipolar material problem. J. Elasticity, 29(2):175–202, 1992. |
bib | DOI | http |
| 60 |
Antonín Novotný and Michael Růžička. Some qualitative properties of incompressible multipolar materials. Ann. Univ. Ferrara Sez. VII (N.S.), 38:1–24 (1993), 1992. |
bib |
| 59 |
Josef Málek, Jindřich Nečas, and Michael Růžička. On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci., 3(1):35–63, 1993. |
bib | DOI | http |
| 58 |
Jens Frehse and Michael Růžička. On the regularity of the stationary Navier-Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21(1):63–95, 1994. |
bib | http |
| 57 |
Jens Frehse and Michael Růžička. Weighted estimates for stationary Navier-Stokes equations. Acta Appl. Math., 37(1-2):53–66, 1994. Mathematical problems for Navier-Stokes equations (Centro, 1993). |
bib | DOI | http |
| 56 |
Josef Málek, Michael Růžička, and Gudrun Thäter. Fractal dimension, attractors, and the Boussinesq approximation in three dimensions. Acta Appl. Math., 37(1-2):83–97, 1994. Mathematical problems for Navier-Stokes equations (Centro, 1993). |
bib | DOI | http |
| 55 |
Jens Frehse and Michael Růžička. Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal., 128(4):361–380, 1994. |
bib | DOI | http |
| 54 |
Jens Frehse and Michael Růžička. Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann., 302(4):699–717, 1995. |
bib | DOI | http |
| 53 |
J. Málek, K. R. Rajagopal, and M. Růžička. Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci., 5(6):789–812, 1995. |
bib | DOI | http |
| 52 |
Jens Frehse and Michael Růžička. Regular solutions to the steady Navier-Stokes equations. In Navier-Stokes equations and related nonlinear problems (Funchal, 1994), pages 131–139. Plenum, New York, 1995. |
bib |
| 51 |
J. Málek, M. Padula, and M. Růžička. A note on derivative estimates for a Hopf solution to the Navier-Stokes system in a three-dimensional cube. In Navier-Stokes equations and related nonlinear problems (Funchal, 1994), pages 141–146. Plenum, New York, 1995. |
bib |
| 50 |
J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996. |
bib | DOI | http |
| 49 |
Jindřich Nečas, Michael Růžička, and Vladimir Šverák. Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 323(3):245–249, 1996. |
bib |
| 48 |
K. R. Rajagopal, M. Růžička, and A. R. Srinivasa. On the Oberbeck-Boussinesq approximation. Math. Models Methods Appl. Sci., 6(8):1157–1167, 1996. |
bib | DOI | http |
| 47 |
Jens Frehse and Michael Růžička. Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(4):701–719 (1997), 1996. |
bib | http |
| 46 |
Michael Růžička. A note on steady flow of fluids with shear dependent viscosity. In Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996), volume 30, pages 3029–3039, 1997. |
bib | DOI | http |
| 45 |
Jens Frehse and Michael Růžička. A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations, 11(2):361–368, 1998. |
bib |
| 44 |
Michael Růžička. Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris Sér. I Math., 329(5):393–398, 1999. |
bib | DOI | http |
| 43 |
Michael Růžička. Flow of shear dependent electrorheological fluids: unsteady space periodic case. In Applied nonlinear analysis, pages 485–504. Kluwer/Plenum, New York, 1999. |
bib |
| 42 |
Y. Kagei, M. Růžička, and G. Thäter. Natural convection with dissipative heating. Comm. Math. Phys., 214(2):287–313, 2000. |
bib | DOI | http |
| 41 |
J. Málek, J. Nečas, and M. Růžička. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p>=2. Adv. Differential Equations, 6(3):257–302, 2001. |
bib |
| 40 |
Andreas Prohl and Michael Růžička. On fully implicit space-time discretization for motions of incompressible fluids with shear-dependent viscosities: the case p<=2. SIAM J. Numer. Anal., 39(1):214–249 (electronic), 2001. |
bib | DOI | http |
| 39 |
Luboš Pick and Michael Růžička. An example of a space Lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. |
bib | DOI | http |
| 38 |
Lars Diening, Andreas Prohl, and Michael Růžička. On time-discretizations for generalized Newtonian fluids. In Nonlinear problems in mathematical physics and related topics, II, volume 2 of Int. Math. Ser. (N. Y.), pages 89–118. Kluwer/Plenum, New York, 2002. |
bib | DOI | http |
| 37 |
Frank Ettwein and Michael Růžička. Existence of strong solutions for electrorheological fluids in two dimensions: steady Dirichlet problem. In Geometric analysis and nonlinear partial differential equations, pages 591–602. Springer, Berlin, 2003. |
bib |
| 36 |
L. Diening and M. Růžička. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. |
bib | DOI | http |
| 35 |
L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·). I. J. Math. Anal. Appl., 298(2):559–571, 2004. |
bib | DOI | http |
| 34 |
L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·). II. J. Math. Anal. Appl., 298(2):572–588, 2004. |
bib | DOI | http |
| 33 |
Lars Diening and Michael Růžička. Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech., 7(3):413–450, 2005. |
bib | DOI | http |
| 32 |
J. Málek, M. Růžička, and V. V. Shelukhin. Herschel-Bulkley fluids: existence and regularity of steady flows. Math. Models Methods Appl. Sci., 15(12):1845–1861, 2005. |
bib | DOI | http |
| 31 |
Lars Diening, Andreas Prohl, and Michael Růžička. Semi-implicit Euler scheme for generalized Newtonian fluids. SIAM J. Numer. Anal., 44(3):1172–1190 (electronic), 2006. |
bib | DOI | http |
| 30 |
Yoshiyuki Kagei, Michael Růžička, and Gudrun Thäter. A limit problem in natural convection. NoDEA Nonlinear Differential Equations Appl., 13(4):447–467, 2006. |
bib | DOI | http |
| 29 |
Lars Diening, Carsten Ebmeyer, and Michael Růžička. Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal., 45(2):457–472 (electronic), 2007. |
bib | DOI | http |
| 28 |
F. Ettwein and M. Růžička. Existence of local strong solutions for motions of electrorheological fluids in three dimensions. Comput. Math. Appl., 53(3-4):595–604, 2007. |
bib | DOI | http |
| 27 |
L. Diening and M. Růžička. Interpolation operators in Orlicz-Sobolev spaces. Numer. Math., 107(1):107–129, 2007. |
bib | DOI | http |
| 26 |
L. Diening, F. Ettwein, and M. Růžička. C1,α-regularity for electrorheological fluids in two dimensions. NoDEA Nonlinear Differential Equations Appl., 14(1-2):207–217, 2007. |
bib | DOI | http |
| 25 |
Michael Růžička and Lars Diening. Non-Newtonian fluids and function spaces. In NAFSA 8–Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. |
bib |
| 24 |
Jens Frehse and Michael Růžička. Non-homogeneous generalized Newtonian fluids. Math. Z., 260(2):355–375, 2008. |
bib | DOI | http |
| 23 |
Luigi C. Berselli, Lars Diening, and Michael Růžička. Optimal error estimates for a semi-implicit Euler scheme for incompressible fluids with shear dependent viscosities. SIAM J. Numer. Anal., 47(3):2177–2202, 2009. |
bib | DOI | http |
| 22 |
Arianna Passerini, Michael Růžička, and Gudrun Thäter. Natural convection between two horizontal coaxial cylinders. ZAMM Z. Angew. Math. Mech., 89(5):399–413, 2009. |
bib | DOI | http |
| 21 |
Luigi C. Berselli, Lars Diening, and Michael Růžička. Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech., 12(1):101–132, 2010. |
bib | DOI | http |
| 20 |
Lars Diening and Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete Contin. Dyn. Syst. Ser. S, 3(2):255–268, 2010. |
bib | DOI | http |
| 19 |
Lars Diening, Michael Růžička, and Jörg Wolf. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(1):1–46, 2010. |
bib |
| 18 |
Hugo Beirão da Veiga, Petr Kaplický, and Michael Růžička. Regularity theorems, up to the boundary, for shear thickening flows. C. R. Math. Acad. Sci. Paris, 348(9-10):541–544, 2010. |
bib | DOI | http |
| 17 |
Jens Frehse, Josef Málek, and Michael Růžička. Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids. Comm. Partial Differential Equations, 35(10):1891–1919, 2010. |
bib | DOI | http |
| 16 |
Jens Frehse and Michael Růžička. Existence of a regular periodic solution to the Rothe approximation of the Navier-Stokes equation in arbitrary dimension. In New directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 181–192. Birkhäuser Verlag, Basel, 2010. |
bib |
| 15 |
Antonín Novotný, Michael Růžička, and Gudrun Thäter. Singular limit of the equations of magnetohydrodynamics in the presence of strong stratification. Math. Models Methods Appl. Sci., 21(1):115–147, 2011. |
bib | DOI | http |
| 14 |
A. Passerini, C. Ferrario, M. Růžička, and G. Thäter. Theoretical results on steady convective flows between horizontal coaxial cylinders. SIAM J. Appl. Math., 71(2):465–486, 2011. |
bib | DOI | http |
| 13 |
Hugo Beirão da Veiga, Petr Kaplický, and Michael Růžička. Boundary regularity of shear thickening flows. J. Math. Fluid Mech., 13(3):387–404, 2011. |
bib | DOI | http |
| 12 |
L. Diening, D. Lengeler, and M. Růžička. The Stokes and Poisson problem in variable exponent spaces. Complex Var. Elliptic Equ., 56(7-9):789–811, 2011. |
bib | DOI | http |
| 11 |
Antonín Novotný, Michael Růžička, and Gudrun Thäter. Rigorous derivation of the anelastic approximation to the Oberbeck-Boussinesq equations. Asymptot. Anal., 75(1-2):93–123, 2011. |
bib |
| 10 |
L. Belenki, L. C. Berselli, L. Diening, and M. Růžička. On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal., 50(2):373–397, 2012. |
bib | DOI | http |
| 9 |
Hannes Eberlein and Michael Růžička. Existence of weak solutions for unsteady motions of Herschel-Bulkley fluids. J. Math. Fluid Mech., 14(3):485–500, 2012. |
bib | DOI | http |
| 8 |
L. Diening, P. Nägele, and M. Růžička. Monotone operator theory for unsteady problems in variable exponent spaces. Complex Var. Elliptic Equ., 57(11):1209–1231, 2012. |
bib | DOI | http |
| 7 |
V. V. Shelukhin and M. Růžička. On Cosserat-Bingham fluids. ZAMM Z. Angew. Math. Mech., 93(1):57–72, 2013. |
bib | DOI | http |
| 6 |
Daniel Lengeler and Michael Růžička. Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Ration. Mech. Anal., 211(1):205–255, 2014. |
bib | DOI | http |
| 5 |
Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos. Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier-Stokes equations. J. Comput. Phys., 270:182–202, 2014. |
bib | DOI | http |
| 4 |
Lars Diening, Dietmar Köner, Michael Růžička, and Ioannis Toulopoulos. A local discontinuous Galerkin approximation for systems with p-structure. IMA J. Numer. Anal., 34(4):1447–1488, 2014. |
bib | DOI | http |
| 3 |
Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos. Numerical solutions of systems with (p,δ)-structure using local discontinuous Galerkin finite element methods. Internat. J. Numer. Methods Fluids, 76(11):855–874, 2014. |
bib | DOI | http |
| 2 |
Luigi C. Berselli, Lars Diening, and Michael Růžička. Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids. IMA J. Numer. Anal., 35(2):680–697, 2015. |
bib | DOI | http |
| 1 |
F. Ettwein, M. Růžička, and B. Weber. Existence of steady solutions for micropolar electrorheological fluid flows. Nonlinear Anal., 125:1–29, 2015. |
bib | DOI | http |