Seal element of the university of freiburg in the shape of a clover

Publications

Preprints

3 J. Blechta, P.A. Gazca-Orozco, A. Kaltenbach, and M. Růžička. Exact poincaré constants in three-dimensional annuli. 2025. submitted. bib | http
2 J. Blechta, P.A. Gazca-Orozco, A. Kaltenbach, and M. Růžička. Quasi-optimal Discontinuous Galerkin discretisations of the p-Dirichlet problem. 2024. submitted. bib | http
1 A. Kaltenbach and M. Růžička. Conditional quasi-optimal error estimate for a finite element discretization of the p-Navier–Stokes equations: The case p > 2. 2024. accepted. bib

Articles

106 J. Jeßberger and M. Růžička. Weak solutions for steady, fully inhomogeneous generalized Navier-Stokes equations. Nonlinear Anal., 253:Paper No. 113715, 12, 2025. bib | DOI | http
105 L. C. Berselli, A. Kaltenbach, and M. Růžička. Energy conservation for weak solutions of incompressible Newtonian fluid equations in Hölder spaces with Dirichlet boundary conditions in the half-space. Math. Ann., 391(4):5911–5940, 2025. bib | DOI | http
104 A. Passerini, B. Rummler, M. Růžička, and G. Thäter. Natural convection in the horizontal annulus: Critical Rayleigh number for the steady problem. ZAMM Z. Angew. Math. Mech., 105(3):Paper No. e202300535, 23, 2025. bib | DOI
103 A. Kaltenbach and M. Růžička. Note on quasi-optimal error estimates for the pressure for shear-thickening fluids. ESAIM Math. Model. Numer. Anal., 58(5):1907–1933, 2024. bib | DOI | http
102 K. Kang and M. Růžička. Liouville type problem for the steady p-Stokes system in the half-space. J. Diff. Equa., 414:455–486, 2024. bib | DOI
101 A. Kaltenbach and M. Růžička. Existence of steady solutions for a general model for micropolar electrorheological fluid flows. SIAM J. Math. Anal., 55:2238–2260, 2023. bib | DOI | http
100 A. Kaltenbach and M. Růžička. Analysis of a fully-discrete, non-conforming approximation of evolution equations and applications. Math. Models Methods Appl. Sci., 33:1147–1192, 2023. bib | DOI | http
99 A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part III: Convergence rates for the pressure. SIAM J. Num. Anal., 61:1763–1782, 2023. bib | DOI | http
98 A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part II: Convergence rates for the velocity. SIAM J. Num. Anal., 61:1641–1663, 2023. bib | DOI | http
97 A. Kaltenbach and M. Růžička. A Local Discontinuous Galerkin approximation for the p-Navier-Stokes system, Part I: Convergence analysis. SIAM J. Num. Anal., 61:1613–1640, 2023. bib | DOI | http
96 A. Kaltenbach and M. Růžička. Convergence analysis of a Local Discontinuous Galerkin approximation for nonlinear systems with balanced Orlicz-structure. ESAIM Math. Model. Numer. Anal., 57(3):1381–1411, 2023. bib | DOI | http
95 A. Kaltenbach and M. Růžička. Existence of steady solutions for a model for micropolar electrorheological fluid flows with not globally log –Hölder continuous shear exponent. J. Math. Fluid Mech., 25:Paper No. 40, 2023. bib | DOI | http
94 L. C. Berselli, A. Kaltenbach, R. Lewandowski, and M. Růžička. On the existence of weak solutions for a family of unsteady rotational Smagorinsky models. Pure Appl. Funct. Anal., 8(1):83–102, 2023. bib | DOI | http
93 L. C. Berselli and M. Růžička. Natural second-order regularity for systems in the case 1<p<=2 using the A-approximation. In A. Carapau, F. Vaidya, editor, Recent Advances in Mechanics and Fluid-Structure Interaction with Applications: The Bong Jae Chung Memorial Volume, pages 3–37. Springer International Publishing, 2022. bib | DOI | http
92 L. C. Berselli and M. Růžička. Natural second-order regularity for parabolic systems with operators having (p,δ)-structure and depending only on the symmetric gradient. Calc. Var. PDEs, page Paper No. 137, 2022. bib | DOI | http
91 L. C. Berselli and M. Růžička. Space-time discretization for nonlinear parabolic systems with p-structure. IMA J. Numerical Analysis, 42:260–299, 2022. bib | DOI | http
90 H. Eberlein and M. Růžička. Global weak solutions for an Newtonian fluid interacting with a Koiter type shell under natural boundary conditions. DCDS-S, pages 4093–4140, 2021. bib | DOI | http
89 L. C. Berselli and M. Ružička. Optimal error estimate for a space-time discretization for incompressible generalized Newtonian fluids: the Dirichlet problem. Partial Differ. Equ. Appl., 2(4):Paper No. 59, 2021. bib | DOI | http
88 L. C. Berselli, A. Kaltenbach, and M. Ružička. Analysis of fully discrete, quasi non-conforming approximations of evolution equations and applications. Math. Models Methods Appl. Sci., 31(11):2297–2343, 2021. bib | DOI | http
87 J. Jeßberger and M. Ružička. Existence of weak solutions for inhomogeneous generalized Navier-Stokes equations. Nonlinear Anal., 212:Paper No. 112538, 16, 2021. bib | DOI | http
86 A. Kaltenbach and M. Ružička. Variable exponent Bochner-Lebesgue spaces with symmetric gradient structure. J. Math. Anal. Appl., 503(2):Paper No. 125355, 34, 2021. bib | DOI | http
85 M. Křepela and M. Růžička. Addendum to “A counterexample related to the regularity of the p-Stokes problem”. J. Math. Science, 247(6):957–959, 2020. bib
84 L. C. Berselli and M. Růžička. On the regularity of solution to the time-dependent p-Stokes system. Opuscula Math., 40(1):49–69, 2020. bib | DOI
83 A. Kaltenbach and M. Růžička. Note on the existence theory for pseudo-monotone evolution problems. J. Evol. Equ., 21(1):247–276, 2021. bib | DOI | http
82 S. Bartels and M. Růžička. Convergence of fully discrete implicit and semi-implicit approximations of singular parabolic equations. SIAM J. Numer. Anal., 58(1):811–833, 2020. bib | DOI | http
81 M. Křepela and M. Růžička. Solenoidal difference quotients and their application to the regularity theory of the p-Stokes system. Calc. Var. Partial Differential Equations, 59(1):Paper No. 34, 24, 2020. bib | DOI | http
80 L. C. Berselli and M. Růžička. Global regularity for systems with p-structure depending on the symmetric gradient. Adv. Nonlinear Anal., 9(1):176–192, 2020. bib | DOI | http
79 S. Eckstein and M. Růžička. On the full space–time discretization of the generalized Stokes equations: The Dirichlet case. SIAM J. Numer. Anal., 56(4):2234–2261, 2018. bib | DOI | http
78 M. Křepela and M. Růžička. A counterexample related to the regularity of the p-Stokes problem. J. Math. Science, 232 (3):390–401, 2018. translated from Problemy Matematicheskogo Analiza 92, 2018, pp. 159–168. bib | DOI | http
77 P. Nägele and M. Růžička. Generalized Newtonian fluids in moving domains. J. Differential Equations, 264(2):835–866, 2018. bib | DOI | http
76 T. Malkmus, M. Růžička, S. Eckstein, and I. Toulopoulos. Generalizations of SIP methods to systems with p-structure. IMA J. Numer. Anal., 38(3):1420–1451, 2018. bib | DOI | http
75 B. Rummler, M. Růžička, and G. Thäter. Exact Poincaré constants in two-dimensional annuli. ZAMM Z. Angew. Math. Mech., 97(1):110–122, 2017. bib | DOI | http
74 M. Růžička, V. V. Shelukhin, and M. M. dos Santos. Steady flows of Cosserat-Bingham fluids. Math. Methods Appl. Sci., 40(7):2746–2761, 2017. bib | DOI | http
73 E. Bäumle and M. Růžička. Note on the existence theory for evolution equations with pseudo-monotone operators. Ric. Mat., 66(1):35–50, 2017. bib | DOI | http
72 E. Bäumle and M. Růžička. Existence of weak solutions for unsteady motions of micro-polar electrorheological fluids. SIAM J. Math. Anal., 49(1):115–141, 2017. bib | DOI | http
71 L. C. Berselli and M. Růžička. Global regularity properties of steady shear thinning flows. J. Math. Anal. Appl., 450(2):839––871, 2017. bib | DOI | http
70 P. Nägele, M. Růžička, and D. Lengeler. Functional setting for unsteady problems in moving domains and applications. Comp. Var. Ell. Syst., 62(1):66–97, 2016. bib | DOI | http
69 E. Molitor and M. Růžička. On inhomogeneous p-Navier-Stokes systems. In V. Radulescu, A. Sequeira, and V. Solonnikov, editors, Recent Advances in PDEs and Applications, volume 666 of Contemp. Math., pages 317–340. AMS Proceedings, 2016. bib
68 L. Diening, M. Růžička, and K. Schumacher. A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math., 35(1):87–114, 2010. bib | DOI | http
67 W. Eckart and M. Růžička. Modeling micropolar electrorheological fluids. Int. J. Appl. Mech. Eng., 11:813–844, 2006. bib
66 Y. Kagei and M. Růžička. The Oberbeck-Boussinesq approximation as a constitutive limit. Continuum Mech. Thermodyn., 28(5):1411–1419, 2016. bib | DOI | http
65 K.R. Rajagopal and M. Růžička. Mathematical modeling of electrorheological materials. Continuum Mechanics and Thermodynamics, 13(1):59–78, 2001. bib | DOI | http
64 K.R. Rajagopal and M. Růžička. On the modeling of electrorheological materials. Mech. Research Comm., 23(4):401–407, 1996. bib | DOI | http
63 Michael Růžička. Mathematical and physical theory of multipolar viscoelasticity. Bonner Mathematische Schriften [Bonn Mathematical Publications], 233. Universität Bonn, Mathematisches Institut, Bonn, 1992. bib
62 J. Nečas and M. Růžička. A dynamic problem of thermoelasticity. Z. Anal. Anwendungen, 10(3):357–368, 1991. bib
61 Jindřich Nečas and Michael Růžička. Global solution to the incompressible viscous-multipolar material problem. J. Elasticity, 29(2):175–202, 1992. bib | DOI | http
60 Antonín Novotný and Michael Růžička. Some qualitative properties of incompressible multipolar materials. Ann. Univ. Ferrara Sez. VII (N.S.), 38:1–24 (1993), 1992. bib
59 Josef Málek, Jindřich Nečas, and Michael Růžička. On the non-Newtonian incompressible fluids. Math. Models Methods Appl. Sci., 3(1):35–63, 1993. bib | DOI | http
58 Jens Frehse and Michael Růžička. On the regularity of the stationary Navier-Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 21(1):63–95, 1994. bib | http
57 Jens Frehse and Michael Růžička. Weighted estimates for stationary Navier-Stokes equations. Acta Appl. Math., 37(1-2):53–66, 1994. Mathematical problems for Navier-Stokes equations (Centro, 1993). bib | DOI | http
56 Josef Málek, Michael Růžička, and Gudrun Thäter. Fractal dimension, attractors, and the Boussinesq approximation in three dimensions. Acta Appl. Math., 37(1-2):83–97, 1994. Mathematical problems for Navier-Stokes equations (Centro, 1993). bib | DOI | http
55 Jens Frehse and Michael Růžička. Regularity for the stationary Navier-Stokes equations in bounded domains. Arch. Rational Mech. Anal., 128(4):361–380, 1994. bib | DOI | http
54 Jens Frehse and Michael Růžička. Existence of regular solutions to the stationary Navier-Stokes equations. Math. Ann., 302(4):699–717, 1995. bib | DOI | http
53 J. Málek, K. R. Rajagopal, and M. Růžička. Existence and regularity of solutions and the stability of the rest state for fluids with shear dependent viscosity. Math. Models Methods Appl. Sci., 5(6):789–812, 1995. bib | DOI | http
52 Jens Frehse and Michael Růžička. Regular solutions to the steady Navier-Stokes equations. In Navier-Stokes equations and related nonlinear problems (Funchal, 1994), pages 131–139. Plenum, New York, 1995. bib
51 J. Málek, M. Padula, and M. Růžička. A note on derivative estimates for a Hopf solution to the Navier-Stokes system in a three-dimensional cube. In Navier-Stokes equations and related nonlinear problems (Funchal, 1994), pages 141–146. Plenum, New York, 1995. bib
50 J. Nečas, M. Růžička, and V. Šverák. On Leray’s self-similar solutions of the Navier-Stokes equations. Acta Math., 176(2):283–294, 1996. bib | DOI | http
49 Jindřich Nečas, Michael Růžička, and Vladimir Šverák. Sur une remarque de J. Leray concernant la construction de solutions singulières des équations de Navier-Stokes. C. R. Acad. Sci. Paris Sér. I Math., 323(3):245–249, 1996. bib
48 K. R. Rajagopal, M. Růžička, and A. R. Srinivasa. On the Oberbeck-Boussinesq approximation. Math. Models Methods Appl. Sci., 6(8):1157–1167, 1996. bib | DOI | http
47 Jens Frehse and Michael Růžička. Existence of regular solutions to the steady Navier-Stokes equations in bounded six-dimensional domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(4):701–719 (1997), 1996. bib | http
46 Michael Růžička. A note on steady flow of fluids with shear dependent viscosity. In Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996), volume 30, pages 3029–3039, 1997. bib | DOI | http
45 Jens Frehse and Michael Růžička. A new regularity criterion for steady Navier-Stokes equations. Differential Integral Equations, 11(2):361–368, 1998. bib
44 Michael Růžička. Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris Sér. I Math., 329(5):393–398, 1999. bib | DOI | http
43 Michael Růžička. Flow of shear dependent electrorheological fluids: unsteady space periodic case. In Applied nonlinear analysis, pages 485–504. Kluwer/Plenum, New York, 1999. bib
42 Y. Kagei, M. Růžička, and G. Thäter. Natural convection with dissipative heating. Comm. Math. Phys., 214(2):287–313, 2000. bib | DOI | http
41 J. Málek, J. Nečas, and M. Růžička. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains: the case p>=2. Adv. Differential Equations, 6(3):257–302, 2001. bib
40 Andreas Prohl and Michael Růžička. On fully implicit space-time discretization for motions of incompressible fluids with shear-dependent viscosities: the case p<=2. SIAM J. Numer. Anal., 39(1):214–249 (electronic), 2001. bib | DOI | http
39 Luboš Pick and Michael Růžička. An example of a space Lp(x) on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. bib | DOI | http
38 Lars Diening, Andreas Prohl, and Michael Růžička. On time-discretizations for generalized Newtonian fluids. In Nonlinear problems in mathematical physics and related topics, II, volume 2 of Int. Math. Ser. (N. Y.), pages 89–118. Kluwer/Plenum, New York, 2002. bib | DOI | http
37 Frank Ettwein and Michael Růžička. Existence of strong solutions for electrorheological fluids in two dimensions: steady Dirichlet problem. In Geometric analysis and nonlinear partial differential equations, pages 591–602. Springer, Berlin, 2003. bib
36 L. Diening and M. Růžička. Calderón-Zygmund operators on generalized Lebesgue spaces Lp(·) and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. bib | DOI | http
35 L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·). I. J. Math. Anal. Appl., 298(2):559–571, 2004. bib | DOI | http
34 L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces Lp(·). II. J. Math. Anal. Appl., 298(2):572–588, 2004. bib | DOI | http
33 Lars Diening and Michael Růžička. Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech., 7(3):413–450, 2005. bib | DOI | http
32 J. Málek, M. Růžička, and V. V. Shelukhin. Herschel-Bulkley fluids: existence and regularity of steady flows. Math. Models Methods Appl. Sci., 15(12):1845–1861, 2005. bib | DOI | http
31 Lars Diening, Andreas Prohl, and Michael Růžička. Semi-implicit Euler scheme for generalized Newtonian fluids. SIAM J. Numer. Anal., 44(3):1172–1190 (electronic), 2006. bib | DOI | http
30 Yoshiyuki Kagei, Michael Růžička, and Gudrun Thäter. A limit problem in natural convection. NoDEA Nonlinear Differential Equations Appl., 13(4):447–467, 2006. bib | DOI | http
29 Lars Diening, Carsten Ebmeyer, and Michael Růžička. Optimal convergence for the implicit space-time discretization of parabolic systems with p-structure. SIAM J. Numer. Anal., 45(2):457–472 (electronic), 2007. bib | DOI | http
28 F. Ettwein and M. Růžička. Existence of local strong solutions for motions of electrorheological fluids in three dimensions. Comput. Math. Appl., 53(3-4):595–604, 2007. bib | DOI | http
27 L. Diening and M. Růžička. Interpolation operators in Orlicz-Sobolev spaces. Numer. Math., 107(1):107–129, 2007. bib | DOI | http
26 L. Diening, F. Ettwein, and M. Růžička. C1,α-regularity for electrorheological fluids in two dimensions. NoDEA Nonlinear Differential Equations Appl., 14(1-2):207–217, 2007. bib | DOI | http
25 Michael Růžička and Lars Diening. Non-Newtonian fluids and function spaces. In NAFSA 8–Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. bib
24 Jens Frehse and Michael Růžička. Non-homogeneous generalized Newtonian fluids. Math. Z., 260(2):355–375, 2008. bib | DOI | http
23 Luigi C. Berselli, Lars Diening, and Michael Růžička. Optimal error estimates for a semi-implicit Euler scheme for incompressible fluids with shear dependent viscosities. SIAM J. Numer. Anal., 47(3):2177–2202, 2009. bib | DOI | http
22 Arianna Passerini, Michael Růžička, and Gudrun Thäter. Natural convection between two horizontal coaxial cylinders. ZAMM Z. Angew. Math. Mech., 89(5):399–413, 2009. bib | DOI | http
21 Luigi C. Berselli, Lars Diening, and Michael Růžička. Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech., 12(1):101–132, 2010. bib | DOI | http
20 Lars Diening and Michael Růžička. An existence result for non-Newtonian fluids in non-regular domains. Discrete Contin. Dyn. Syst. Ser. S, 3(2):255–268, 2010. bib | DOI | http
19 Lars Diening, Michael Růžička, and Jörg Wolf. Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 9(1):1–46, 2010. bib
18 Hugo Beirão da Veiga, Petr Kaplický, and Michael Růžička. Regularity theorems, up to the boundary, for shear thickening flows. C. R. Math. Acad. Sci. Paris, 348(9-10):541–544, 2010. bib | DOI | http
17 Jens Frehse, Josef Málek, and Michael Růžička. Large data existence result for unsteady flows of inhomogeneous shear-thickening heat-conducting incompressible fluids. Comm. Partial Differential Equations, 35(10):1891–1919, 2010. bib | DOI | http
16 Jens Frehse and Michael Růžička. Existence of a regular periodic solution to the Rothe approximation of the Navier-Stokes equation in arbitrary dimension. In New directions in mathematical fluid mechanics, Adv. Math. Fluid Mech., pages 181–192. Birkhäuser Verlag, Basel, 2010. bib
15 Antonín Novotný, Michael Růžička, and Gudrun Thäter. Singular limit of the equations of magnetohydrodynamics in the presence of strong stratification. Math. Models Methods Appl. Sci., 21(1):115–147, 2011. bib | DOI | http
14 A. Passerini, C. Ferrario, M. Růžička, and G. Thäter. Theoretical results on steady convective flows between horizontal coaxial cylinders. SIAM J. Appl. Math., 71(2):465–486, 2011. bib | DOI | http
13 Hugo Beirão da Veiga, Petr Kaplický, and Michael Růžička. Boundary regularity of shear thickening flows. J. Math. Fluid Mech., 13(3):387–404, 2011. bib | DOI | http
12 L. Diening, D. Lengeler, and M. Růžička. The Stokes and Poisson problem in variable exponent spaces. Complex Var. Elliptic Equ., 56(7-9):789–811, 2011. bib | DOI | http
11 Antonín Novotný, Michael Růžička, and Gudrun Thäter. Rigorous derivation of the anelastic approximation to the Oberbeck-Boussinesq equations. Asymptot. Anal., 75(1-2):93–123, 2011. bib
10 L. Belenki, L. C. Berselli, L. Diening, and M. Růžička. On the finite element approximation of p-Stokes systems. SIAM J. Numer. Anal., 50(2):373–397, 2012. bib | DOI | http
9 Hannes Eberlein and Michael Růžička. Existence of weak solutions for unsteady motions of Herschel-Bulkley fluids. J. Math. Fluid Mech., 14(3):485–500, 2012. bib | DOI | http
8 L. Diening, P. Nägele, and M. Růžička. Monotone operator theory for unsteady problems in variable exponent spaces. Complex Var. Elliptic Equ., 57(11):1209–1231, 2012. bib | DOI | http
7 V. V. Shelukhin and M. Růžička. On Cosserat-Bingham fluids. ZAMM Z. Angew. Math. Mech., 93(1):57–72, 2013. bib | DOI | http
6 Daniel Lengeler and Michael Růžička. Weak solutions for an incompressible Newtonian fluid interacting with a Koiter type shell. Arch. Ration. Mech. Anal., 211(1):205–255, 2014. bib | DOI | http
5 Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos. Local discontinuous Galerkin numerical solutions of non-Newtonian incompressible flows modeled by p-Navier-Stokes equations. J. Comput. Phys., 270:182–202, 2014. bib | DOI | http
4 Lars Diening, Dietmar Köner, Michael Růžička, and Ioannis Toulopoulos. A local discontinuous Galerkin approximation for systems with p-structure. IMA J. Numer. Anal., 34(4):1447–1488, 2014. bib | DOI | http
3 Dietmar Kröner, Michael Růžička, and Ioannis Toulopoulos. Numerical solutions of systems with (p,δ)-structure using local discontinuous Galerkin finite element methods. Internat. J. Numer. Methods Fluids, 76(11):855–874, 2014. bib | DOI | http
2 Luigi C. Berselli, Lars Diening, and Michael Růžička. Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids. IMA J. Numer. Anal., 35(2):680–697, 2015. bib | DOI | http
1 F. Ettwein, M. Růžička, and B. Weber. Existence of steady solutions for micropolar electrorheological fluid flows. Nonlinear Anal., 125:1–29, 2015. bib | DOI | http

Overview Articles

6 Michael Růžička. Analysis of generalized Newtonian fluids. In Topics in mathematical fluid mechanics, volume 2073 of Lecture Notes in Math., pages 199–238. Springer, Heidelberg, 2013. DOI | http
5 Michael Růžička. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004. DOI | http
4 Michael Růžička and Jens Frehse. Regularity for steady solutions of the Navier-Stokes equations. In Theory of the Navier-Stokes equations, volume 47 of Ser. Adv. Math. Appl. Sci., pages 159–178. World Sci. Publ., River Edge, NJ, 1998.  
3 Michael Růžička and Jens Frehse. Regularity for steady solutions of the Navier-Stokes equations. In Theory of the Navier-Stokes equations, volume 47 of Ser. Adv. Math. Appl. Sci., pages 159–178. World Sci. Publ., River Edge, NJ, 1998. DOI | http
2 Jens Frehse and Michael Růžička. Weighted estimates for the stationary Navier-Stokes equations. In Mathematical theory in fluid mechanics (Paseky, 1995), volume 354 of Pitman Res. Notes Math. Ser., pages 1–29. Longman, Harlow, 1996.  
1 Michael Růžička. Multipolar materials. In Workshop on the Mathematical Theory of Nonlinear and Inelastic Material Behaviour (Darmstadt, 1992), volume 239 of Bonner Math. Schriften, pages 53–64. Univ. Bonn, Bonn, 1993.  

Books

5 Michael Růžička. Nichtlineare Funktionalanalysis: Eine Einführung. Springer-Lehrbuch Masterclass. Springer Berlin Heidelberg, 2 edition, 2020. http
4 Lars Diening, Petteri Harjulehto, Peter Hästö, and Michael Růžička. Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. DOI | http
3 Michael Růžička. Nichtlineare Funktionalanalysis: Eine Einführung. Springer-Lehrbuch Masterclass. Springer Berlin Heidelberg, 2004. DOI | http
2 Michael Růžička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. DOI | http
1 Michael Růžička. J. Málek, J. Nečas, M. Rokyta, and M. Růžička. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996. DOI | http