Forschung
Arbeitsgebiete und aktuelle Forschungsprojekte der Arbeitsgruppen
Die Arbeitsgruppe beschäftigt sich mit der Entwicklung und Analyse numerischer Verfahren zur Lösung partieller Differentialgleichungen, die in den Materialwissenschaften und in der Geometrie auftreten. Basierend auf Aussagen zur Existenz und Eindeutigkeit von Lösungen der nicht-linearen Differentialgleichungen werden Zeitschrittverfahren und Finite-Elemente-Methoden im Hinblick auf Stabilität und Konvergenz untersucht. Die so entwickelten Approximationsmethoden werden experimentell mit Hilfe leistungsfähiger Rechner getestet und erlauben die Beurteilung der Eignung der zugrundeliegenden mathematischen Modelle für praktische Vorhersagen.
Der Schwerpunkt der Arbeitsgruppe liegt in der Analysis und Numerik von Variationsproblemen und den dazugehörigen Gradientenflüssen. Die Fragestellungen reichen von Problemen in der Mikrostrukturbildung bei der Minimierung nichtkonvexer Energien zur Evolution von Grenzflächen in Medien mit zufälligen Hindernissen. Ein besonderes Augenmerk liegt hierbei auf der mathematischen Herleitung effektiver makroskopischer Modelle aus dem mikroskopischen Verhalten sowie deren numerischer Implementierung.
Die Arbeitsgruppe beschäftigt sich mit der theoretischen und numerischen Analysis von nichtlinearen partiellen Differentialgleichungen. Diese werden mit Techniken und Ideen aus ganz verschiedenen Bereichen, wie z.B. der Funktionalanalysis, der Funktionenraumtheorie oder der numerischen Fehleranalyse, behandelt. Apriori Abschätzungen und Grenzwertprozesse spielen eine zentrale Rolle. Die behandelten Probleme sind meist durch Fragestellungen aus der Strömungsmechanik oder der Geometrie motiviert.
Meine Arbeitsgebiete umfassen folgende Punkte:
- Approximationseigenschaften von tiefen neuronalen Netzwerken
- maschinelles Lernen
- Numerische Methoden für stochastische und deterministische partielle Differentialgleichungen
- Numerische und stochastische Analysis
- Computational Stochastics